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Propagation of EM Wavesin Composite Bianisotropic
Cylindrical Structures

loannis O. Vardiambasis, Member, |EEE, J. L. Tsalamengas, Member, |EEE, and Konstantinos Kostogiannis

Abstract—Propagation of electromagnetic waves in a bian-
isotropic cylinder embedded in an unbounded bianisotropic space
and enclosing an array of parallel bianisotropic circular rods is
studied. Based on a separation of variables technique which is
facilitated by the use of suitable trandation-addition relations, the
analysis ends up with an infinite homogeneous system of linear
algebraic equations. All matrix elements are given by pole-free,
single-term, closed-form expressions. Numerical results are pre-
sented for several cases along with comparisons with previously
published data. Theseresults reveal the possibility to dynamically
control the dispersion characteristics of the structure via changes
in the constitutive parameter s of the materialsinvolved.

Index Terms—Bianisotropic guides, composite media,

cylindrical guides, optical waveguides, propagation modes.

I. INTRODUCTION

OMPLEX media are of interest to a broad field of ap-
plications, ranging from ionospheric research and geo-
physical exploration, to crystal physics and integrated optics,
to microwave and millimeter wave circuitry. Such media are
potentially useful, in particular, in developing reciprocal and
nonreciprocal microwave and millimeter-wave devices, high-
efficiency microstrip antennas and arrays, guiding devices and
couplers, microwave and photonic lenses, and optical filters.
In this paper, we investigate propagation in the general con-
figuration, shown in Fig. 1, of a bianisotropic cylinder (region
1), which: 1) encloses an arbitrary number, M. — 1, of parallel
cylindrical bianisotropic rods[regionsi (i = 2,3, ..., M.)] and
2) isembedded in an unbounded bianisotropic space (region 0).
If desired, someregions (or al) may either befilled by isotropic
or biisotropic (e.g., chiral) mediaor be occupied by perfect elec-
tric conductors (PECs). Although for simplicity al regions are
taken to be homogeneous herein, the extension to cylindrically
stratified regions is straightforward.

Some special cases shown in Fig. 2, independently treated
in the past by several methods (separation of variables, coupled
mode theory, and finite elements) [1]-{8], serve hereto partialy
test the accuracy and correctness of our numerical codes.

The techniques in this paper parallel those of [9], where
the corresponding nonhomogeneous (scattering) problem for
an obliquely incident plane-wave excitation is addressed. The
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Fig. 1. Geometry of the problem: the bianisotropic cylinder (51,7, fl, 5:1),
embedded in the unbounded bianisotropic space (Zo, 7z, (4, &), encloses the
bianisotropic cylinders (£:, %, (., €,); i = 2,3,..., M...
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Fig. 2. (@) Coaxial gyrotropic chirowaveguide. (b) Two coupled parallel chira
rods. (c) Circular chiral/dielectric waveguide. (d) Parallel two-wireline covered
with athree-layer dielectric.

analysis in both papers ends up with infinite systems of linear,
algebraic equations whose matrix elements assume closed
single-term forms.

The assumed exp(+jwt) time dependence has been sup-
pressed throughout the analysis.
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Il. BASIC THEORY

Consider a bianisotropic medium characterized by the con-
gtitutive relations

D =£0 (?E + Z()E—H)

B =y (ﬁﬁ + Zo_lz_E) (1a)
where Zy = \/po/eo istheintrinsic impedance of free space.
Our analysis is restricted to the case where al tensors g, 7z, ¢,
and ¢ have the formt

p=&,4G¢.
(1b)

P = p1(E% + §ij) — jp2(&§ — §%) + p3iz,

Assuming z dependence of the form ¢—7%%, the field
[(E(p), H(p))] e#* inside such a medium can be expressed
in terms of its components along the z axis, £, and H_, which
are found to satisfy the coupled second-order differential

equations of
VIE.| | A1 A | E. @
VIH.| | -Ay AY||H.

where A, A, A}, and A} areconstantsgivenin [9, Appendix].
Interms of E. and H., the transverse (to =) components of
the field are given by

Bl__1[d -a
H,| Aldy a
« Z X VtEZ _ 124 Yy VtEZ
z2x Vi H, — V|| VWH, | )’

A = ayd + axdl ©)]
where expressionsfor the constants ay, a», o}, ab, v, v, ', and
~" are given in [9, Appendix].

The genera solution of (2) may be written in the form
E.=Z7,H+7Z,H® H.=H'+H® 4
where H® and H? satisfy the Helmholtz equation

(Vi+E)H{=0(g=a,b). (5)

1Gyro-€lectric-magnetic (gyrotropic) media, magnetized chiroferrites/chiro-
plasma, biisotropic (i.e., chiral), and simple (isotropic) mediaare, among others,
some practical cases described by (1a) and (1b).

Here k2 and k7 denote the roots, with respect to &2, of the bi-
guadratic equation

E*+ k(A + A 4+ A1 A + A4, =0 (6)
and
k? + A/
Za,bz(a’b, 1):_ 2A2 ' ™
AQ (ka,b + Al)

I1l. REPRESENTATION OF THE FIELD IN REGION (i)
Let [E(p), H(p)]e ?P* denote the field of a mode propa
gating in the structure of Fig. 1. We use the notation (J,,(-) and

H,(-) denote the Bessel and the second-kind Hankel functions
of order n)

= [z z
Zi= 1 ﬂ
= [ Ilkip) 0
Ja(p) = 0 Jn(/ff;p)}
=i [Hy(kip) 0
Hn(p) = I 0 Hn(/ff,p)} (8)

where the superscript ¢, ¢ = 0,1,... M., is used to designate
the region of space and apply separation of variables to obtain
(93)—<(9c), shown at the bottom of this page. Here (o’ , b’,) and
(¢!, d¢) are unknown expansion constants and (p;, ¢;) denote
the polar coordinates of 5 in the coordinate system (O;) associ-
ated with the ith cylinder. With the help of (9a)—(9c), the other
components of the field may be found via (3).

Expressions for the field, referring to the coordinate system
(O = 1,2,...,M.) exclusively, can be found from (9)
using the trandational-addition relations given by [9, egs.
(15)—16)]. Then, application of the continuity conditions
for the tangential components of (£, H) over al cylindrical
boundaries involved yields an infinite, homogeneous, linear
system of algebraic equations, which can most compactly be
written in theform of (10), shown at the bottom of the following
page. Here, 61, isthe Kronecker delta, £, denotes the radius

:1
of the gth cylinder, whereas the 2 x 2 matrices W ,,(R,)
=1 —J
and U, (R,) coincide, respectively, with W _(R,) and
=J
MU, (Ry) of [9, eq. (200)]. The quantities (Dsq, ¢sq), Which
specify the position of O, relativeto O, areindicated in Fig. 1.

The prime in the series over s means that the term with s = ¢
is excluded from the summation.

B0z %5 7 e [
i) o W, e -
Ei (ﬁ) :?1 n‘if‘ 71 (pl)ejn¢1 a’}l + gc: ﬁl (p )ejn¢s CZ’ (9b)
H; (ﬁ) n=—n " brll s=2 " dfl
w2 3 T ]
L =Z; Jn ; )ed e 2|y Pmax — 00 9
[Hz’(P) i#0,1 = —Timax (v O 0
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TABLE |
3/ko VERSUS TRUNCATION SIZE Ry, FOR THE STRUCTURE OF FIG. 2(d)

B/kg
TV ax HE-1 HE-2 HE-3 HE-4
1 1.9909722 | 1.7775781 | 1.4077468 | 1.3328057
2 1.9909769 | 1.7765722 | 1.4077212 | 1.3327978
3 1.9909779 | 1.7765533 | 1.4077005 | 1.3327806
4 1.9909787 | 1.7765517 | 1.4076999 | 1.3327811
5 1.9909788 | 1.7765517 | 1.4076998 | 1.3327812

Vanishing the determinant of the homogeneous system (10)
yields the dispersion equation of the structure. This equation is
treated numerically after truncating the size of the matrix to afi-
nitevalue, i.e., by considering finite values of n ., in (98)—(9c).

We note the following.

1) With slight modifications, the above analysisis also ap-
plicable when any region¢ (¢ = 0,1,2,...,M.) isoccu-
pied by a simple dielectric (=;, u;). In that case, in order
to avoid some i ndeterminacies encountered in the expres-
sions of Z, ;, one has simply to replace Z; by the unit
matrix I everywhere.

2) Further smplification results when some region, say
cylinder (i), is PEC. In such a case, (E*, H') vanishes
and thus at p = R; only the continuity (vanishing) of the
tangential electric field needs to be accounted for.

IV. NUMERICAL RESULTS AND COMPARISONS

A. Convergence of the Algorithm Versus n.,.x

The convergence characteristics of the algorithm are shown
in Tablel, where 3/ ko is presented versus n,,.x, the truncation
size of the seriesin (9), for the first four modes of the structure
of Fig. 2(d). Region (0) is air (o, t10), region (1) is occupied
by achiral medium (g1, 111, £1), region (2) isdielectric (e2, 112),
and regions (3) and (4) are PECs. The parameter values are:
Ry = 3175 mm, R = 0.7TR{, R = 0.1R{, D = 0.3R;y,
e1=2,m=1&6=-G =401le=4p=1adf=
25 GHz. Apparently, the convergence is very rapid and stable.
For instance, using n.,.. = 4 sufficesto obtain the propagation
constant to within eight significant figures.

0.032

£ =)0.001Z,
£=j0.005Z¢
1, Fig4]

} This work
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R-R) 1,

Fig.3. B(Ry — Rz2)/ko versus (R — R2)/ A, for the first five modes of a
coaxia gyrotropic chirowaveguide.

B. Dispersion Diagrams—Comparison Wth Previously
Published Data

Fig. 3 pertains to the gyrotropic chirowaveguide of Fig. 2(a).
For = 1,% = (5.3361+&2) (224 99) —50.1(29—§2) +(2.5+
£2)22, and for two values of the chirality parameter, £ = —( =
j0.00lZo,j0.005Z0, it shows /3(R1 — RQ)/kO VErsus (R1 —
Ry)/ Ao for several modes when R; = 0.5R; (Ao is the free-
space wavelength). As seen, the effect of changing the chirality
is appreciable for the dominant (TEM) aswell asfor the higher
order modes. For the H F5; and H E_»; modes, our results are
compared with those of [1] and the agreement is excellent.

Fig. 4 shows the dispersion diagrams of several modes sup-
ported by a single chiral rod of radius R (dash—dotted lines)
and by two coupled parallel rods (solid lines) for the parameter
vaues[seeFig. 2(b)] D = 2.205R, e = 1.1+ 107%22, n =1,
and £ = —¢ = 50.001%,. In the case of the single rod, our
results are indistinguishable from those of [2]. Noticeably, to
any mode (HE-n) of the single-rod guide correspond two HE-n
modes of the double-rod guide. In other words, the HE-n modes
supported by each rod when it is alone in the unbounded space
couple to each other and, as a result, they appear displaced in
the presence of the second rod.

Fig. 5 contains two families of plots. The first family, dotted
curves, show the dispersion characteristics of the first three
modes of the chiral/dielectric structure of Fig. 2(c) when
Ry = 0.5R;, 1 = 1, My = 1, e0 = 281, Mo = 1, and
&y = —(o = —j0.084. These results are in full agreement with

ZTu(R) | Zus, Hay (R, <Z§4) " Z: Ta(Ry) ;
—Zgd (1 15, py ' = i M)er. | 21 M =t
;1 v | — : : szw +(1-614) Z o/ (=MD p— N T (D) <61 )
_WJW(R(I) ‘ UJ\{ _61(1(Rq) Ax4 <d£1w ) N=—Nmax WA{(R(]
M 4x1
n L pr— :1 —
e . Z1J (R ) =1 ZlH (R ) =1 S
sy S d oas,) | T+, | T T 0w () =[]
= Mmax =2 W (Ry) Un(By)
M=0,41,42, ..., 4nma; g=1,..., M, (10)
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Fig. 4. 3/ko versus kqR. (a) Single chiral rod (dashed-dotted curves).

(b) Two coupled paralel rods (solid curves).
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Fig. 5. 3/ko versus ko R, for the first three modes of a circular waveguide
loaded by one (dotted lines) or two coupled parallel chiral rods (solid lines).

those of [3]. Note aso that the first two modes, HE-1 and HE-2,
have apparently the same cutoff frequency. The second family,
solid curves, pertain to the case where a second chira rod of
radius B3 = 0.23R; is placed paralel to and at a distance
0.75R; from the axis of the first cylinder; its parameters are
€3 = 7.22, u3 = 1,and &3 = {3 = —;1.491. Noticeable is
the effect of this second rod on the HE-1 and HE-2 modes,
which leads to considerable enhancement of the bandwidth for
single-mode propagation.

Fig. 6 refers to the multiconductor-multilayered isotropic
structure of Fig. 2(d). For Ry 53.5 mm, Ry 6.5 mm,
R=06mm D =72mm, ey =79, u;1 =1, =1, and
e = 1, it shows the dispersion curves of several modes. The
modes labeled HE;;, FH,;, HE{2, and EH;, have aso
been treated in [4]. Comparison of our results with those of [4]
reveals a perfect agreement.

We note also that in validating our agorithm we were
able to exactly reproduce, among others, the curves in
[1, Figs. 3(a8)-(c)], [2, Fig. 4], [3, Figs. 2-5], [4, Figs. 6-8],
[5, Figs. 4-6], [6, Figs. 2-3], [8, Figs. 2-3] (not shown).
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Fig. 6. 3/kq versusfrequency for several modes of the structure of Fig. 2(d).
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Fig. 7. 3/ko versus ko R, for the first two modes for the structure of two
parallel dielectric rods coated by a chiral cylinder.

Finally, the exhaustive comparisons which have been carried
out in[9] in connection with the corresponding inhomogeneous
(scattering) problem provide an alternative test of the present
algorithm as well. (As noted previously, the matrix of the final
algebraic system has the same form for both problems).

Fig. 7 shows 3/ kg versus ko R; for thestructure (seetheinset)
of two identical dielectric rods having (e, 1) = (4.34,1) and
radii R, with their axes at a distance DD, which are coated by an
open chira cylinder of radius By when R = 0.2R; and D =
0.5R;. The parameters of the chiral medium are (e, u1,¢) =
(2.32,1, jx) where « takes on three values, x = 0.01, 0.1, and
0.2. Once again, we observetheradical change of the dispersion
characteristics with increasing chirality.

Fig. 8 refersto the structure (seetheinset) of apair of parallel
perfectly conducting cylinders coated by a magnetized ferrite
cylinder. The ferrite has a relative dielectric constant £ = 12.6
and atensoria relative permeability

_ By —Jpn 0 Qy
p=juz 1 0|, u1=1+m;
0 0 s "o
—Q
= =1. 11
M2 (Q%{—QQ)7 M3 ( )
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Fig.8. 3/kq versus R, for thefirst two modes of the structure of two parallel
conducting rods coated by aferritecylinder. (R = 0.6 mm, D = 2.8 mm, f =
21 GHz).

Here Q@ = w/wm, Qu = wo/wm, wo = [ylpwoHo, wm =
|vlo Mo, where Hy is the externally applied bias (DC) mag-
netic field, My isthe intensity of the saturation magnetization,
and |y| = 1.759 x 10" C/Kg. To bring to light the effect of
anisotropy, we assume that ;10Mo = 0.3 Wh/m? and let Qg
take on three values, 2y = 0.01, 0.5, and 1. Inspection of the
pertinent results reveals the possibility to dynamically control
the dispersion characteristics of the structure, via a change in
the externally applied dc magnetic field.

Analogous results are shown in Fig. 9 for a perfectly con-
ducting cylinder of radius R, which is eccentrically coated by
a composite cylinder of radius R; (chiroferrite) that obeys the
constitutive relations of

D=cocE+ B, H=j¢E+ [uop) 'B. (12
Here ¢ = 15, whereas 7 is given from (11) with poMy =
0.1 Wb/m?. In Fig. 9(a), we show 3/k, versus ko R, for three
values of Qg (Qy = 0.01, 1.5, 2.5) when £, = 0.00055. As
seen, an increase of Q2 leads to decreasing values of 3/k,.
Fig. 9(b) shows 3/k, versus ko R for three values of ¢, (&, =
0,0.0015,0.0025) when 2y = 0.3. Asseen, anincrease of the
chirality parameter ¢. leads to increasing values of 3/k,.

Fig. 10 refersto a cylindrical rod, eccentrically coated by a
chiroferrite cylinder [see (12)] of radius R; with parameters
(e, 1, &) = (12.6,71,0.0025). Here 1z has the form (11) with
Qy = 1.2 and poMy = 0.2 Wb/m?. The core rod of ra-
dius R istaken to be: 1) air (2 = 1,2 = 1); 2) dielectric
(g2 = 12.6, up = 1); 3) achira medium (2 = 12.6,ux =
1,& = —(; = —j); or 4) aPEC. In order to shed light on the
nonreciprocal behavior of the structure, both 3+ /kq and 3~ / ko
areshown versus ko Ry, 3T, and 3~ being the propagation con-
stant of the first mode propagating in the 42 and —2 direction,
respectively. As seen, the nonreciprocal effect is very strongin
all cases.

It has been proven in [10] and corroborated in [11] that a
narrow, infinitely extending strip of width 2w is equivalent to
aperfectly conducting cylindrical rod of radius R = w/2. Mo-
tivated by thisremark, comparisons of our results have been car-
ried out with those of [11, Fig. 4] pertaining to a pair of strips

0.15 115 1.65
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---~ 0.001
. 1
10 A : ' .
0.2 0.8 14 20
KR,
(b)
Fig. 9. B/ko versus koR, for the first two modes of a conducting rod

eccentrically coated by a chiroferrite cylinder. (R = 0.25R,, D = 0.5R,

). & & = 0.0055 and Q2 = 0.01,1.5,2.5.. (b) 5y = 0.3 and
¢, = 0,0.0015,0.0025.
4.6
3.7 P
,’KHEI (-) mode
, . T
=< 28 /
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1.0 4 : . . : .
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Fig. 10. 3/kq versus ko R, for the first mode of a rod (dielectric, chira
or perfectly conducting) eccentrically coated by a chiroferrite cylinder.
(R =0.5R1,D = 0.4Ry).

coated by adielectric cylinder. Note that the resultsin [11] were
based on quite different principles (singular-integral-equation
methods). The agreement with [11, Fig. 4] was excellent (not
shown).
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V. CONCLUSION

Propagation in composite cylindrical structures, composed
from a bianisotropic cylinder embedded in an unbounded
bianisotropic space and enclosing an array of parallel bian-
isotropic rods, has been investigated. To this end, a very
flexible separation-of-variables technique has been used to
yield linear algebraic systems whose matrix elements are given
by polefree, single-term expressions. The correctness and
accuracy of the algorithm has been demonstrated by extensive
comparisons with previously published data. Several numerical
examples have been presented in order to demonstrate the
effect of changing the constitutive parameters on the dispersion
characteristics of the structure.
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