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Propagation of EM Waves in Composite Bianisotropic
Cylindrical Structures

Ioannis O. Vardiambasis, Member, IEEE, J. L. Tsalamengas, Member, IEEE, and Konstantinos Kostogiannis

Abstract—Propagation of electromagnetic waves in a bian-
isotropic cylinder embedded in an unbounded bianisotropic space
and enclosing an array of parallel bianisotropic circular rods is
studied. Based on a separation of variables technique which is
facilitated by the use of suitable translation-addition relations, the
analysis ends up with an infinite homogeneous system of linear
algebraic equations. All matrix elements are given by pole-free,
single-term, closed-form expressions. Numerical results are pre-
sented for several cases along with comparisons with previously
published data. These results reveal the possibility to dynamically
control the dispersion characteristics of the structure via changes
in the constitutive parameters of the materials involved.

Index Terms—Bianisotropic guides, composite media,
cylindrical guides, optical waveguides, propagation modes.

I. INTRODUCTION

COMPLEX media are of interest to a broad field of ap-
plications, ranging from ionospheric research and geo-

physical exploration, to crystal physics and integrated optics,
to microwave and millimeter wave circuitry. Such media are
potentially useful, in particular, in developing reciprocal and
nonreciprocal microwave and millimeter-wave devices, high-
efficiency microstrip antennas and arrays, guiding devices and
couplers, microwave and photonic lenses, and optical filters.

In this paper, we investigate propagation in the general con-
figuration, shown in Fig. 1, of a bianisotropic cylinder (region
1), which: 1) encloses an arbitrary number, , of parallel
cylindrical bianisotropic rods [regions ( )] and
2) is embedded in an unbounded bianisotropic space (region 0).
If desired, some regions (or all) may either be filled by isotropic
or biisotropic (e.g., chiral) media or be occupied by perfect elec-
tric conductors (PECs). Although for simplicity all regions are
taken to be homogeneous herein, the extension to cylindrically
stratified regions is straightforward.

Some special cases shown in Fig. 2, independently treated
in the past by several methods (separation of variables, coupled
mode theory, and finite elements) [1]–[8], serve here to partially
test the accuracy and correctness of our numerical codes.

The techniques in this paper parallel those of [9], where
the corresponding nonhomogeneous (scattering) problem for
an obliquely incident plane-wave excitation is addressed. The
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Fig. 1. Geometry of the problem: the bianisotropic cylinder (" ; � ; � ; � ),
embedded in the unbounded bianisotropic space (" ; � ; � ; � ), encloses the
bianisotropic cylinders (" ; � ; � ; � ); i = 2; 3; . . . ;M .

(a) (b)

(c) (d)

Fig. 2. (a) Coaxial gyrotropic chirowaveguide. (b) Two coupled parallel chiral
rods. (c) Circular chiral/dielectric waveguide. (d) Parallel two-wire line covered
with a three-layer dielectric.

analysis in both papers ends up with infinite systems of linear,
algebraic equations whose matrix elements assume closed
single-term forms.

The assumed time dependence has been sup-
pressed throughout the analysis.
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II. BASIC THEORY

Consider a bianisotropic medium characterized by the con-
stitutive relations

(1a)

where is the intrinsic impedance of free space.

Our analysis is restricted to the case where all tensors , , ,
and have the form1

(1b)

Assuming dependence of the form , the field
inside such a medium can be expressed

in terms of its components along the axis, and , which
are found to satisfy the coupled second-order differential
equations of

(2)

where , , , and are constants given in [9, Appendix].
In terms of and , the transverse (to ) components of

the field are given by

(3)

where expressions for the constants , , , , , , , and
are given in [9, Appendix].
The general solution of (2) may be written in the form

(4)

where and satisfy the Helmholtz equation

(5)

1Gyro-electric-magnetic (gyrotropic) media, magnetized chiroferrites/chiro-
plasma, biisotropic (i.e., chiral), and simple (isotropic) media are, among others,
some practical cases described by (1a) and (1b).

Here and denote the roots, with respect to , of the bi-
quadratic equation

(6)

and

(7)

III. REPRESENTATION OF THE FIELD IN REGION (i)

Let denote the field of a mode propa-
gating in the structure of Fig. 1. We use the notation ( and

denote the Bessel and the second-kind Hankel functions
of order )

(8)

where the superscript , , is used to designate
the region of space and apply separation of variables to obtain
(9a)–(9c), shown at the bottom of this page. Here ( ) and
( ) are unknown expansion constants and ( ) denote
the polar coordinates of in the coordinate system ( ) associ-
ated with the th cylinder. With the help of (9a)–(9c), the other
components of the field may be found via (3).

Expressions for the field, referring to the coordinate system
( )( ) exclusively, can be found from (9)
using the translational-addition relations given by [9, eqs.
(15)–(16)]. Then, application of the continuity conditions
for the tangential components of ( ) over all cylindrical
boundaries involved yields an infinite, homogeneous, linear
system of algebraic equations, which can most compactly be
written in the form of (10), shown at the bottom of the following
page. Here, is the Kronecker delta, denotes the radius

of the th cylinder, whereas the 2 2 matrices

and coincide, respectively, with and

of [9, eq. (20b)]. The quantities ( ), which
specify the position of relative to , are indicated in Fig. 1.
The prime in the series over means that the term with
is excluded from the summation.

(9a)

(9b)

(9c)
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TABLE I
�=k VERSUS TRUNCATION SIZE n FOR THE STRUCTURE OF FIG. 2(d)

Vanishing the determinant of the homogeneous system (10)
yields the dispersion equation of the structure. This equation is
treated numerically after truncating the size of the matrix to a fi-
nite value, i.e., by considering finite values of in (9a)–(9c).

We note the following.

1) With slight modifications, the above analysis is also ap-
plicable when any region ( ) is occu-
pied by a simple dielectric ( ). In that case, in order
to avoid some indeterminacies encountered in the expres-
sions of , one has simply to replace by the unit
matrix everywhere.

2) Further simplification results when some region, say
cylinder (i), is PEC. In such a case, ( ) vanishes
and thus at only the continuity (vanishing) of the
tangential electric field needs to be accounted for.

IV. NUMERICAL RESULTS AND COMPARISONS

A. Convergence of the Algorithm Versus

The convergence characteristics of the algorithm are shown
in Table I, where is presented versus , the truncation
size of the series in (9), for the first four modes of the structure
of Fig. 2(d). Region (0) is air ( ), region (1) is occupied
by a chiral medium ( ), region (2) is dielectric ( ),
and regions (3) and (4) are PECs. The parameter values are:

mm, , , ,
, , , , , and

GHz. Apparently, the convergence is very rapid and stable.
For instance, using suffices to obtain the propagation
constant to within eight significant figures.

Fig. 3. �(R � R )=k versus (R � R )=� for the first five modes of a
coaxial gyrotropic chirowaveguide.

B. Dispersion Diagrams—Comparison With Previously
Published Data

Fig. 3 pertains to the gyrotropic chirowaveguide of Fig. 2(a).
For ,

, and for two values of the chirality parameter,
, it shows versus

for several modes when ( is the free-
space wavelength). As seen, the effect of changing the chirality
is appreciable for the dominant (TEM) as well as for the higher
order modes. For the and modes, our results are
compared with those of [1] and the agreement is excellent.

Fig. 4 shows the dispersion diagrams of several modes sup-
ported by a single chiral rod of radius (dash–dotted lines)
and by two coupled parallel rods (solid lines) for the parameter
values [see Fig. 2(b)] , , ,
and . In the case of the single rod, our
results are indistinguishable from those of [2]. Noticeably, to
any mode (HE-n) of the single-rod guide correspond two HE-n
modes of the double-rod guide. In other words, the HE-n modes
supported by each rod when it is alone in the unbounded space
couple to each other and, as a result, they appear displaced in
the presence of the second rod.

Fig. 5 contains two families of plots. The first family, dotted
curves, show the dispersion characteristics of the first three
modes of the chiral/dielectric structure of Fig. 2(c) when

, , , , , and
. These results are in full agreement with

(10)
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Fig. 4. �=k versus k R. (a) Single chiral rod (dashed–dotted curves).
(b) Two coupled parallel rods (solid curves).

Fig. 5. �=k versus k R for the first three modes of a circular waveguide
loaded by one (dotted lines) or two coupled parallel chiral rods (solid lines).

those of [3]. Note also that the first two modes, HE-1 and HE-2,
have apparently the same cutoff frequency. The second family,
solid curves, pertain to the case where a second chiral rod of
radius is placed parallel to and at a distance

from the axis of the first cylinder; its parameters are
, , and . Noticeable is

the effect of this second rod on the HE-1 and HE-2 modes,
which leads to considerable enhancement of the bandwidth for
single-mode propagation.

Fig. 6 refers to the multiconductor-multilayered isotropic
structure of Fig. 2(d). For mm, mm,

mm, mm, , , , and
, it shows the dispersion curves of several modes. The

modes labeled , , , and have also
been treated in [4]. Comparison of our results with those of [4]
reveals a perfect agreement.

We note also that in validating our algorithm we were
able to exactly reproduce, among others, the curves in
[1, Figs. 3(a)-(c)], [2, Fig. 4], [3, Figs. 2–5], [4, Figs. 6–8],
[5, Figs. 4–6], [6, Figs. 2–3], [8, Figs. 2–3] (not shown).

Fig. 6. �=k versus frequency for several modes of the structure of Fig. 2(d).

Fig. 7. �=k versus k R for the first two modes for the structure of two
parallel dielectric rods coated by a chiral cylinder.

Finally, the exhaustive comparisons which have been carried
out in [9] in connection with the corresponding inhomogeneous
(scattering) problem provide an alternative test of the present
algorithm as well. (As noted previously, the matrix of the final
algebraic system has the same form for both problems).

Fig. 7 shows versus for the structure (see the inset)
of two identical dielectric rods having and
radii , with their axes at a distance , which are coated by an
open chiral cylinder of radius when and

. The parameters of the chiral medium are
where takes on three values, , 0.1, and

0.2. Once again, we observe the radical change of the dispersion
characteristics with increasing chirality.

Fig. 8 refers to the structure (see the inset) of a pair of parallel
perfectly conducting cylinders coated by a magnetized ferrite
cylinder. The ferrite has a relative dielectric constant
and a tensorial relative permeability

(11)
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Fig. 8. �=k versus R for the first two modes of the structure of two parallel
conducting rods coated by a ferrite cylinder. (R = 0:6mm; D = 2:8mm; f =

21 GHz).

Here , , ,
, where is the externally applied bias (DC) mag-

netic field, is the intensity of the saturation magnetization,
and 10 C Kg. To bring to light the effect of
anisotropy, we assume that Wb m and let
take on three values, , 0.5, and 1. Inspection of the
pertinent results reveals the possibility to dynamically control
the dispersion characteristics of the structure, via a change in
the externally applied dc magnetic field.

Analogous results are shown in Fig. 9 for a perfectly con-
ducting cylinder of radius , which is eccentrically coated by
a composite cylinder of radius (chiroferrite) that obeys the
constitutive relations of

(12)

Here , whereas is given from (11) with
Wb m . In Fig. 9(a), we show versus for three

values of ( , 1.5, 2.5) when . As
seen, an increase of leads to decreasing values of .
Fig. 9(b) shows versus for three values of (

) when . As seen, an increase of the
chirality parameter leads to increasing values of .

Fig. 10 refers to a cylindrical rod, eccentrically coated by a
chiroferrite cylinder [see (12)] of radius with parameters

. Here has the form (11) with
and Wb m . The core rod of ra-

dius is taken to be: 1) air ( ); 2) dielectric
( ); 3) a chiral medium (

); or 4) a PEC. In order to shed light on the
nonreciprocal behavior of the structure, both and
are shown versus , , and being the propagation con-
stant of the first mode propagating in the and direction,
respectively. As seen, the nonreciprocal effect is very strong in
all cases.

It has been proven in [10] and corroborated in [11] that a
narrow, infinitely extending strip of width is equivalent to
a perfectly conducting cylindrical rod of radius . Mo-
tivated by this remark, comparisons of our results have been car-
ried out with those of [11, Fig. 4] pertaining to a pair of strips

(a)

(b)

Fig. 9. �=k versus k R for the first two modes of a conducting rod
eccentrically coated by a chiroferrite cylinder. (R = 0:25R ; D = 0:5R
). (a) � = 0:005S and 
 = 0:01;1:5;2:5:. (b) 
 = 0:3 and
� = 0; 0:001S;0:002S.

Fig. 10. �=k versus k R for the first mode of a rod (dielectric, chiral
or perfectly conducting) eccentrically coated by a chiroferrite cylinder.
(R = 0:5R ;D = 0:4R ).

coated by a dielectric cylinder. Note that the results in [11] were
based on quite different principles (singular-integral-equation
methods). The agreement with [11, Fig. 4] was excellent (not
shown).
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V. CONCLUSION

Propagation in composite cylindrical structures, composed
from a bianisotropic cylinder embedded in an unbounded
bianisotropic space and enclosing an array of parallel bian-
isotropic rods, has been investigated. To this end, a very
flexible separation-of-variables technique has been used to
yield linear algebraic systems whose matrix elements are given
by pole-free, single-term expressions. The correctness and
accuracy of the algorithm has been demonstrated by extensive
comparisons with previously published data. Several numerical
examples have been presented in order to demonstrate the
effect of changing the constitutive parameters on the dispersion
characteristics of the structure.
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